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ABSTRACT
We describe the application of a statistical technique known
as Multidimensional Scaling1 to analyze & model a stock
market2. We have reviewed a set of novel papers in this field,
and report on the current state of the art. The strength of
this approach is in it’s ease of implementation, effective visu-
alization and dynamic nature.We give a brief introduction
to MDS, and state the assumptions & problems in stock
market modeling. The approach developed is modified to
study the time-evolving nature of the markets. Finally we
introduce the notion of an Asset Tree which can be used to
make quantified conclusions of the state of the market.

1. INTRODUCTION
It is commonly remarked that Economics is too serious a
subject to be left to Economists. This is very true when
one considers the plethora of parameters and variables that
interact to result in macro & micro economic phenonmenon.
This is easily observed in the context of stock markets. The
New York Stock Exchange3 is the world’s largest stock mar-
ket. On an average day, nearly $73 billion are traded on this
exchange and 1.6 billion shares exchange hands. There are
currently around 2,300 companies listed on the exchange
worth roughly $12.4 trillion (September 2011). In India,
there are around 7000 listed companies in total at various
stock markets, the biggest being National Stock Exchange4.

Stock markets are a vital component of any country’s eco-
nomic prowess. Economists use the stock markets as an
indicator of the state of the Economy, and design policies
to improve the state of affairs. Investors try to predict the
movement of the market to decide which companies to invest
in and maximise their profits. Some of the most fundamen-
tal problems in characterising any stock market are to

• Identify trends & clusters in the market

• Design efficient strategies for investor risk reduction

• Study the time evolution of the market

• Design an analysis framework that is easy to visualize

• Build models to predict future trends of the market

∗Colloquiim Report supervised by Dr. Amit Kumar
1hereafter referred to as MDS
2http://en.wikipedia.org/wiki/Stock_market
3http://nyse.com
4http://nseindia.com

Organization: We summarize some related work in Section
2 and introduce some Economics Preliminaries in Section 3.
We then go on to give a formal description of the problem
and analyze it’s hardness. We then introduce MDS & apply
it to our problem. We conclude by showing some results.

2. LITERATURE SURVEY
Stock Price modeling is a well studied problem. Past work
[3, 8, 11] has focussed on modeling stock prices as stochas-
tic processes and random walks. Alternatively, one can look
at a more macro effect by combining stock prices of vari-
ous companies to make general qualified statements about
the market itself. In this report we study the latter ap-
proach by reviewing two interesting papers [6, 7] which use
the technique of MDS & Asset Trees to study stock markets.
MDS [9, 2] is a well studied statistical technique to study
similarities in large datasets. As we show later, the prob-
lem of interest here is NP-hard. Hence, rather than solve
the problem completely, these papers have shown how these
techniques can help tackle the problem to a fair extent.

3. ECONOMICS PRELIMINARIES
3.1 Stock
A stock (also known as a share) is a notional unit of owner-
ship of a company. A company offers a part of it’s ownership
in units of stock to raise capital from the market.

3.2 Stock Market
In our model, we define a market to be a set C of all the
listed companies that trade their stocks.

3.3 Stock Price
Stock price is a function p : C × T → R+ which assigns
a price to every stock traded in the market. It is a result
of complex dynamics of market demand & supply. The set
T is the time index set at which the stock is to be priced.
Time can be measured on multiple granularities, however it
is most commonly reported on a daily basis.

3.4 Return on Stock
Return on Stock models the utility of a particular stock with
respect to the market. It can be thought of as a function
r : p×C×T → R. Given the price function p, it takes a stock
and predicts it’s utility around a time point τ . There are
various ways of defining a return function, and it critically
impacts the quality of the model. The daily return function
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is defined as

r(p, c, τ) = ln
p(c, τ)

p(c, τ − 1)
(1)

We take the logarithmic fractional increase of the stock price
of day τ from it’s previous day τ − 1, which is the mostly
widely used function.

3.5 Portfolio
A portfolio P is defined as a 5-tuple 〈B, p, r,N , τ〉 where
B ⊂ C & N : B → Z+. B represents a subset of the
listed companies (possibly a sector) that an investor or an
economist is interested in. N determines the number of
stocks bought of each element of B. A portfolio is dynamic
& time-evolving. In most practical cases, an additional pa-
rameter Γ is added to indicate the maximum investment
that can be made into the market.

4. PROBLEM OVERVIEW
4.1 Portfolio Optimization
An instance of portfolio optimization consists of a port-
folio P & a constant Γ. The objective is to design a portfolio
P to

maximize
B⊂C

∑
b∈B

r(p, b, τ) ∗ N (b)

subject to
∑
b∈B

p(b, τ) ∗ N (b) ≤ Γ
(2)

The objective is to pick out a subset of companies B & buy a
certain quantity of shares N (B) so as to maximize the total
return obtainable at that time given the return on stock
prices. Γ limits the total investment that can be made to
buy the stocks of the set B. portfolio optimization is
NP-complete.

knapsack ≤P portfolio optimization

1. portfolio optimization is in NP. A particular subset
B serves as a certificate so that when we compute the
total return on B, we get a sum of amount atleast k.

2. portfolio optimization is NP-hard. The knapsack
problem can be reduced to the decision version of this
problem by considering the companies to be the set
of objects and the stock prices as the object values.
We assign Γ as the total permissible capacity C of our
knapsack.

4.2 Diversification
A related paradigm of portfolio designing is to chose com-
panies from isolated & independent sectors. This reduces
the overall risk involved as it is very unlikely that many un-
correlated sectors go down together. This is an additional
constraint on the choice of the set B. We want the companies
to be forming an independent set of some sorts.

5. MULTIDIMENSIONAL SCALING
5.1 Overview
MDS is a statistical technique to explore similarities in large
datasets and visualize them on a map. Given a geographic
map of cities, one can easily determine the inter-city dis-
tances on the map. The problem of MDS is exactly the

Figure 1: MDS implementation on a set of 10 American
cities

inverse of this problem. It is stated as: Given a set of dis-
tances dij : C2 → R on an entity set C, learn the best fit
function f : C → Rm. The function assigns m-dimensional
coordinates to the entities which can be visualized in an m-
dimensional Euclidean space. Figure 1 shows MDS working
on a set of 10 American cities.

5.2 MDS Stress function
MDS operates as a stress minimization algorithm which tries
to match the distances in the coordinate space and the actual
distance matrix. For each entity c ∈ C, an m-dimensional
vector Xc = (xc1, x

c
2, ..., x

c
m) is chosen randomly. A stress

function S1 is defined as:

S1 =
∑

i,j∈C,i6=j

√
dij

2 − ‖Xi −Xj‖2 (3)

Multiple stress minimization techniques like Simulated An-
nealing or Random Perturbation can be used in order to get
an approximate solution.

5.3 Objective Minimization
MDS can be reformulated as a Linear Program and hence
is in P. However, the Simplex algorithm may not give back
optimal results in reasonable time. [1, 4] are two popular
methods of optimizing MDS stress functions. Many Genetic
Algorithm based techniques have also been tried out[5].

6. USING MDS ON THE MARKET
If one could apply MDS on the market, one can visualize
companies and their interactions in an easy to visualize map.

6.1 Measure on the market
MDS requires a notion of distances between entities. Hence,
we first define a measure on the market. There are certain
properties that this measure must obey.
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Figure 2: The subset of the European market visualized on
a map. Proximity implies correlation.

• Model complex interactions and temporal evolution
faithfully, while abstracting out needless details

• Helpful in finding clusters & trends in the markets

• Well behaved & easy to compute

Both papers note Pearson correlation as one such measure.
It is defined as ρ : C × C × T → [−1, 1]

ρτij =
〈rτi rτj 〉 − 〈rτi 〉〈rτj 〉√

[〈rτi 2〉 − 〈rτi 〉
2][〈rτj 2〉 − 〈rτj 〉

2]
(4)

Here 〈.〉 represent a time-weighted average (expected value)
in a window around τ . The window w is usually kept around
50 days, but can be varied as per requirement. rτi represents
the return on the stock of company i at time point τ . The
paper justifies the use of simple correlation as a good mea-
sure by noting that

• Globally high ρ implies that market is generally corre-
lated, so it is either in a recession or boom phase

• Treasure trove of rich probability theory applicable

• Easy to compute and analyze

6.2 Metric on the market
For the correlation measure to qualify as a distance, we need
to transform it suitably. [7] suggests the following transform:

dτij =
√

2(1− ρτij)

For highly correlated entities, ρij → 1 and hence dij →
0. Hence the distance d ∈ [0, 2] represents promixity in
correlation space. One can verify that d preserves all the
properties of a metric i.e. ∀i, j, k

• dij ≥ 0

• dii = 0

• dij < dik + dkj

• dij = dji

• Ultrametricity: Mapping preserves topology

Figure 3: Minimum Stress versus the allowed degrees of free-
dom

6.3 MDS Static Maps
Figure 2 shows how the result of applying MDS to some
market at one time instant. The paper notes that while
MDS can create a geometric embedding of any dimension,
it is favourable to restrict the problem to 2 dimensions for
the following reasons

• Ease of visualization in 2 dimensions

• Stress doesn’t decrease significantly in higher dimen-
sions (illustrated in Figure 3)

6.4 MDS Time Evolving
A key component of market analysis is to study the temporal
evolution of the market. We have a different distance func-
tion dτ for each time point τ and hence the maps generated
would be slightly different. However, if we were to create
these maps in isolation, they may turn out to be completely
unoriented. Hence, we add another component of stress to
penalize different across maps along with component S1 de-
fined in (3). This serves to stitch consecutive maps.

SτT = Sτ1 +
∑
i

wi ∗ ‖Xτ
i −Xτ−1

i ‖ (5)

There are various possibilities for the weighting factor wi.
One possibility is to set it as the market capitalization5 Mi.
The rationale is to have larger companies more rigid in the
maps and smaller companies move around more freely.

7. ASSET TREE
Vandewalle et al [10] introduces the notion of an Asset Tree
where essential characteristics and properties are described
by measures on a tree. Define Gτ = (C, C × C, w) as a
weighted graph on the market with nodes as companies &
edge weights as the company distances. On this graph, a
minimum spanning tree T τ can be computed using Kruskal’s
or Prim’s algorithm. The tree now has only |C| − 1 most
dominant edges (least distance, max correlation). Certain
special properties of the tree can be studied.

5Mi = total stocks * stock price
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Figure 4: Asset Tree to examine 116 stocks of S&P 500
index. Reference [7]

• A central node vc which can be defined as either the
highest degree vertex or the most strongly correlated
one. This node represents a company that is an im-
portant representative of the market as a whole. If the
company falls, there is high chance the market falls as
well.

• Mean occupation layer l(τ, vc) = 1
|C|

∑
i depth(vτi ) re-

flects the level of correlation in the market by answer-
ing where the bulk of the tree is located.

• Center of mass vm = {v|v ∈ V, l(τ, v) is min}

7.1 Clusters of the Tree
Onnela et al [7] suggest that clusters on the tree reflect the
true economic sectors that companies belong to in the mar-
ket. Under the assumption of market fundamentality6, mar-
kets are naturally divided as clusters and this is reflected in
Figure 4.

7.2 Scale Free Structure
Vandewalle et al [10] report that Asset Trees have a scale
free power law degree distribution. The degree distribution
of the vertex degrees f(n) follows f(n) ∼ n−α with α ≈ 2.2.

8. RESULTS
We present below a few of the results demonstrated in the
paper of using MDS & Asset Trees in markets.

8.1 Asset Tree
In Figure 4, we find that different sectors are well separated
as different branches of the tree and larger companies ap-
pear closer to the root node, which is the central node of
the tree. The paper also reports how well the tree proper-
ties correspond to real events in the market. In particular,
Figure 5 shows how the period from 1986 to 1990 stands
with the market more correlated than normal. This imme-
diately reflects the possibility of a recession in the market
at that time which is true. We find that individual mar-
kets got correlated & came together due to a recession. We
can define global market score looking at the maps and do
a regression analysis to predict future trends.

6All investors have access to uniform information

Figure 5: Statistical plots of the tree edge lengths as a func-
tion of time

Figure 6: MDS Map evolution from 2006 to 2008 when it
becomes very correlated

8.2 MDS Maps
In Figure 6, we can see how companies get placed on a map
and how they change their coordinates with time. We can
see how companies that are well clustered accordingly to
their sector & market, get organized into one strong cluster
as we move towards 2008. If one was to define measures
on the map such as average entity distance or moment of
inertia about a fixed point, one could get extract more useful
information.

9. CONCLUSION
In this report, we summarized the technique of Multidimen-
sional Scaling and how it has been applied in the domain
of Stock Market analysis. We motivated the problems faced
by investors & economists, and introduced portfolio op-
timization. We proved the problem to be NP-complete
and then suggested how MDS can be used to make market
analysis more intuitive and visual. By finding a geometric
embedding of companies over time, we can immediately view
companies that are far & close. A simple investment strat-
egy could be to invest in companies as far away as possible.
This helps restrict our choices of the set B and make the
problem tractable. We then introduced the notion of an As-
set Tree and report on some findings of the paper. We finally
showed some results that were presented in the papers.

4



10. REFERENCES
[1] Seung-Hee Bae, Judy Qiu, and Geoffrey C. Fox.

Multidimensional scaling by deterministic annealing
with iterative majorization algorithm. 03/31/2010
2010. Submitted to InfoVis 2010.

[2] I. Borg and P. Groenen. Modern multidimensional
scaling: Theory and applications. Journal of
Educational Measurement, 40(3):277–280, 2003.

[3] L Harris. Stock price clustering and discreteness.
Review of Financial Studies, 4(3):389–415, 1991.

[4] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[5] Abdullah Konak, David W. Coit, and Alice E. Smith.
Multi-objective optimization using genetic algorithms:
A tutorial.

[6] J. Tenreiro Machado, Fernando B. Duarte, and
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