Activity Recognition using Sun SPOT

Rahul Goyal Arvind Mahla Jagjeet Dhaliwal Ravee Malla
2008CS50222 2011ANZ8418 2008CS50212 2008CS50224
{rahulgoyal34, arvindmahla, jagjeetdhaliwal, ravmalla}@gmail.com

Final Report, Wireless Networks (CSL838)
Supervised by: Dr. Vinay Ribeiro

8 May 2012

1 Introduction

Activity Recognition is a well studied problem. It has been attempted by employing video [3], environmental
[5] or other wearable sensors which report physical quantities like acceleration, pressure, etc. We are using
Sun SPOT, an accelerometer prototype by Sun that works on wireless Personal Area Network technology to
communicate data. Such an approach is preferred over other approaches like video surveillance (which puts
privacy at risk and is expensive) and environmental sensors which are inaccurate. Our objective is to place
one or more motes at different places of the human body and use the data collected to determine the current
activity being performed by the individual.

1.1 Motivation

Such an application can be used in various settings. For eg., this device can be worn by the elderly, and it
can send data to the hospital/relatives. Any unusual activity recorded by the mote, like falling down or being
unusually still can be immediately reported and looked into. It can also be used along with GPS to give more
exact location, since we can track the movement of the subject over a period of time. It can be used by Sport-
s/Dance Coaches to monitor the movement of body parts. It is also useful in wartime scenario to find injured
soldiers who have restricted movements.

Organization. We begin by briefly describing the Sun SPOT motes, how they are configured, various ways by
which they communicate data. We present a brief literature survey of the past work of Activity Recognition, in
general and using Sun SPOT. We then describe the activities that were considered, and how we designed our
experiments. Then we present our results and accuracy of Activity Recognition for various activities. Finally,
we conclude by making some general remarks and suggesting further extensions of this project.

2 Sun SPOT

Sun SPOT is a wireless mote device developed by Sun Microsystems. It can be used to create a Wireless Sensor
Network(WSN) based on the IEEE 802.15.4 standard (Zigbee) and can be programmed using Squawk Java
VM. The basic Sun SPOT device architecture has the following layers.

e Sensor board
e Preprocessor board

e Battery

oooooooo«+ LEDs
sl

Switches

USBE connector

(
00 Cont itch [
3388888%8 ontrol switc T'E‘Igl —
[_ L

8
UL

S >

Figure 1: Front view of the wireless mote Figure 2: Top view of the wireless mote

ANATOMY OF A

SuNSPOT

Figure 3: Anatomy of a Sun SPOT

It has various features like
e Three-axis accelerometer
e Temperature & Light sensor
e Radio Transmitter based on Zigbee protocol
e 8 multi-color LEDs

It has found various applications in the fields of Surveillance, Art & Toys, Robotics, etc.

2.1 Protocol implemented

The protocol implemented by Sun SPOT device is the IEEE 802.15.4 Zigbee standard. This protocol is aimed
towards a low cost, low power, short range communication across multiple clients and a single basestation. It
can support sustained speeds of 250 Kbits/sec over a range of 10 meters. For handling packet collision, it can
support CSMA /CA with guaranteed time slots for all the clients. Since it is a WPAN network, it can operate
in 3 fixed unlicensed bands viz. 868.0-868.6 MHz (Europe), 902-928 MHz (North America) & 2400-2483.5 MHz
(worldwide).

2.2 How we used the device

The Sun SPOT! device was issued from the Wireless Lab. The box contains 1 base station, 2 wireless motes and
documentation. The motes are low power, light-weight accelerometers which report in real-time, the acceleration
along 3 dimensions, the tilt, the temperature, etc. FEach of the wireless motes consists a set of LEDs, some
buttons and USB connectivity to load the program. The program is burnt onto these devices and then they
operate without any supervision. The base station acts as the mediator between the motes and our analyzer
program. It implements & manages the wireless protocol used by the motes for communication. The wireless
mote reports accelerations in units of ¢2, hence the noted readings are scaled by this factor. The mote has a
range of about 10-15 meters and can measure acceleration of magnitudes upto 6g.

2.3 Application Architecture

Our Activity Recognition happens by running 2 applications in parallel, one running on the host which collects
the data across all the motes, and the other running on the mote which computes the current acceleration along
the 3 axis and sends it to the host.

2.4 Sample Application

We began by trying out certain sample applications provided by Sun on the devices. These helped us get a
hold of the API that we can use to get the necessary acceleration values of the motes. One application uses the
current orientation of the Sun SPOT to simulate effect of gravity on a ball represented as one of 8 LEDs (the
ball moves along these 8 LEDs). Another application prints a welcome message on the LEDs with the speed of
message controlled by the acceleration values.

2.5 Calibration

There is a need to calibrate the motes so as to maintain consistency in taking the readings. For this we followed
the procedure described in the manual®. Fig. 4 & 5 show the schematic diagrams of the mote which show the
axis convention adopted and the methodology for computing the tilt. Before calibration, even when the mote
was stationary, we found some fluctuating non-zero values. When the device is perfectly calibrated, we find that
the only acceleration is along the Z-direction because of acceleration due to gravity. The values are multiplied

by g

2.6 Deployment on the mote

There are 2 ways to deploy a program on a given mote.
1. Connect the mote directly to the host machine and load the code on the mote

2. Connect the mote wirelessly to the base station which is connected to the host. The program is then
loaded onto the mote

We tried with both methods, but we have decided to use the second method since it is easier to deploy. The
mote runs a Sqwauwk Java program as an OS and the host machine runs on a J2SE JVM.

2.7 3 ways to run the protocol

We implemented the Zigbee protocol to communicate the acceleration values to the host in the following 3 ways

Lwww.sunspotworld.com

Zacceleration due to gravity
http://www.sunspotworld.com/docs/AppNotes/Accelerometer AppNote.pdf

total acceleration

tilt angle o level
. a axis
aaxis
Figure 4: Axis convention for the mote Figure 5: Method of computing tilt values

e Datagram communication protocol where the mote sent Datagram packets at regular intervals. This was
not very reliable, since multiple motes would collide at the host and not retransmit their lost packets.
Also, the address of the mote was not saved by the host, and it was repeatedly determined by examining
the packet itself

e Handshaking before every connection request. This is similar to HT'TP where the mote requesting for a
persistent connection from the basestation once at the start, and there on bandwidth was reserved for the
mote. This method allows an on-demand bandwidth allocation to the motes. So more and more motes
can join the Wireless Sensor network. But there was an overhead of initial handshaking

e Hardcoding the connections for each of the motes

We are currently using the third mechanism which allows us to skip the stage of handshaking.

3 Past Work

Activity Recognition in general is a well studied problem in the context of images & video [1, 3]. These
technologies have their own disadvantages. For eg. in the context of video, there are issues of privacy. Also,
a rich set of training data is required for reasonable accuracy in predicting the activity and even then it is
subject dependent. Recently, with the explosion of smart phones and wireless devices, efforts have been made
to integrate these devices seamlessly into users daily routines[9, 6, 7]. The basic idea in the latter approach
is to measure physical variable like acceleration, temperature, etc. in real-time, and predict the activity being
performed.

We found a PhD dissertation [4] to be very useful as our reference. It looks at many aspects of activity
recognition using wireless sensors, and we plan to follow it closely. We have also reviewed other work[1], which
helped us answer questions like the polling frequency of acceleration data logging (which is kept around 20-30
Hz), location of placing sensors, etc. It is widely believed that subject independent activity recognition is very
difficult. Also, in a practical scenario the activies are much more unconstrained, hence these are much harder
to classify. It is also very hard to acquire clean training set. Activities are commonly classified as

1. Static: Lying, Sitting, Standing
2. Transitions: Lying — Standing, Standing — Lying, Lying — Sitting, Walking — Standing, etc
3. Dynamic: Walking, Running, Hopping

We have found that once acceleration data from various subjects performing different activities has been col-
lected, two kinds of classification approaches can be applied. One can model the logged acceleration values as a
time series and apply basic signal processing [2] to extract features of characteristic to each activity. The other
approach is to apply higher level Machine Learning ideas like Bayesian and Hidden Markov Models [8, 10, 6].

Figure 6: Location of the 2 wireless sensor motes on the body

4 Methodology 1

4.1 Data Collection

For data collection, we decided to log the data readings from 2 wireless sensors, one placed above the elbow,
while the other just above the knee cap as shown in the figure. However, in our later experiments we decided
to place the mote inside trouser pockets as it was more convenient. The activities (comprising of several static
as well as dynamic activities) that we have decided to have trained models are walking, running, hopping, lying
down, sitting and standing. So the data collection involves collecting clean data sets for all the above activities.
We placed the wireless motes on two people on positions specified in the figure and made them do each of the
above activities at least three times to create a large enough data set to analyze. Each reading was recorded
over a time span of 18-20 seconds at a sample rate of 5 Hz to give us a large enough window to get a clean data
set. A time window this large was chosen because the first and the last 5 seconds of the readings had to be
ignored owing to the observation that the wireless motes took some time before they actually started sending
information to the base station after they had been activated and also the pattern at the beginning or near the
end of any activity was unreliable. This gave us about 8-10 second long clean data logs from which we had to
analyze and train our models for those particular activities.

The values recorded for each experimented were the calibrated acceleration values reported from each of
the motes, in the 3 dimensions. Using these readings, we experimented with the representation of this data,
that would work best for this set. The issue was that since each input sample is a time evolving set of values,
a suitable representation is difficult. If we take a time average of the whole sample, it might lead to significant
errors in detection, since we ignore the rich time variation pattern of each of the activities. If we took all the
time sample values as independent dimensions, this would lead to the data set being computationally infeasible
and incorrect results due to the so called curse of dimensionality®.

Hence, in our representation, we show the each of the input samples as point the space RY. Each of
these points, represent an activity done by an individual. Using these, we developed the class conditional
distributions of the activities independent of the person doing that activity. Finally, we make the prediction
using MLE method.

We have decided to log the data readings from 2 wireless sensors, though we are yet to decide whether we
will need the readings from both of them. One is placed above the elbow, while the other above the knee cap.
The positions are shown in Fig. 6.

Our approach is divided into 2 phases, the training phase and the classification phase. These phases are
represented as block diagrams in Fig. 7 & 8. Initially, we will be collecting labelled training data. We will ask
various subjects to perform fixed activities like standing up, walking, running, etc while wearing the motes, and

“http://en.wikipedia.org/wiki/Curse_of_dimensionality

i Sun SPOT -*7 Sun SPOT
Host b USB {“pasa sation”) (“Target")

B802.15.4 radio

Data
v
Logger

Training Trained

Log Algorithm . Model

Figure 7: Training Phase of Algorithm

record the readings obtained. These will be logged under the suitable activity class. We will then use these
logs offline, to build a rich trained model. This model may even be represented as a set of fuzzy/logic rules or
certain statistical measures which can later be used for classification.

For the second phase, we implement a real-time classifier, which looks at the acceleration reading of the
mote(s) for the past 6 second window, and predict the activity being performed at that instant. Note, that this
could be a composite activity like standing up, walking and then running. Using the trained model, and a set
of learned rules, we are able to classify the current pattern as an activity.

The process of building a training model involves two fundamental steps.

1. Modelling the input data in some representation, assigning some distribution to it
2. Defining a particular predictor strategy which will be used to chose one class over another while testing

For the first step, we have taken the representation of our input set as a point in R? space as defined above.
Additionally, we will assume that each of the activities (classes) generate points in this space independently
using a gaussian distribution. The gaussian distribution in d-dimensions is given as

3 (x—p)E 7 x—p)

In P(x) = —nd — 5 - 5 (1)

where X represents the cross-correlation matrix between the dimensions, p represents the mean. By MLE
theory, we get that for the given test data points, the most accurate predictor class-conditional distributions
are when we set the variance and mean as the following.

p= (2)
Yij = Elziz;] — Elxi|E[z;] (3)

Hence, using this thoery, we calculated the appropriate means and variances for each of the classes, i.e. walking,
running, lying, hopping & standing. We have taken the readings from the arm to be more appropriate. Having
calculated the CCD (Class-Conditional Distributions) for each of the classes, we can use the Bayesian rule
shown below to classify a new activity in the following way. Given a test sample point x, we will evaluate the
probability P(w|x) where w is a class (either of standing, lying, running, hopping, etc) and then choose that w
for which P(w|x) is the highest.

P(xly) « P(y[x)P(x) (4)

The following are the plots of acceleration variation for various activities that were logged using a Python
code attached in appendix. Using these plots, we made our observations and rules to predict activities. Consider

B Sun SPOT -"7 Sun SPOT
Host b USBE {“pasa sation”) (“Target")
802.15.4 radio
w Data
Trained Data Claﬁﬁificatiup Recognized
Models Analyzer Algorithm Activity

Figure 8: Training Phase of Algorithm

Variation of Acceleration Components while walking Variation of Acceleration Components while walking

10

-10F

Acceleration Value in m/s2
Acceleration Value in m/s2

=15}

=20

— X Component
— Y Component
Z Component

l| — X Component
— Y Component
-~ Z Component

8000 —20,

3000 5000 6000 7000

Time {in ms)

4000 5000 6000 7000 1000 2000 3000

Time {in ms)

0 1000 2000 3000

Figure 9: Acceleration Plots for Walking from Mote Figure 10: Acceleration Plots for Walking
above Elbow from Mote above Knee

fig. 8,9,10,11. If we compare running and walking activities, we can clearly see that for plot in fig. 8 & 10,
the component of acceleration in X direction shows drastic change in case of running as compared to walking.
This is due to the fact that while running the lateral movement of our arms is much more in running than in
walking. Also, since the movement is fast while running, the magnitude of acceleration in Y direction is also
more. In case of hopping/jumping activity, we can clearly see that there is a large margnitude of unidirectional
acceleration in Y direction because due up-down motion.

Consider fig. 14 & 15 which are plots for the transition sitting to standing. We find that for the mote
above the elbow, the initial and final acceleration states are identical which is as expected since the hand comes
to the same position at the end of the transition. However, for the mote above the knee, acceleration due to
gravity was earlier along the Z axis and in the final state the orientation changes. Such a scenario will be fairly
universal across subjects, and can be used to predict such activities easily. Hence in case mote 1 reports no
change while mote 2 changes, we can conclude that the above transition has occured. A similar rule can also
be applied for reverse transition of standing to sitting. For the transition lying to standing, we can note that
the acceleration states of both the motes will change. We can develop similar rules for all other activities.

8000

15 T

Variation of Acceleration Components while running

10|

X Component
Y Component
Z Component

Acceleration Value in m/s2

0 1000

2000 3000

4000 5000
Time (in ms)

6000

7000 8000 9000

20

15

Acceleration Value in m/s2

Variation of Acceleration Components while running

X Component
Y Component [{
Z Component

Figure 11: Acceleration Plots for Running from Mote Figure 12: Acceleration Plots for Running

above Elbow

Va
15

riation

Acceleration Value in m/s2

of Acceleration Components while hopping

X Component
Y Component |
Z Component

2000

6000
Time {in ms)

8000

10000 12000

~250 1000 2000 3000 4000 5000 6000 7000 8000
Time (in ms)
from Mote above Knee
2 Variation of Acceleration Compaonents while hopping
— X Component
— Y Component
I
20| -- Z Component , i ; 1
~
£
£]
£
@
3
2]
c
S
T
QL
[4
g
<
_30 I I i I
0 2000 4000 6000 8000 10000
Time {in ms)

Figure 13: Acceleration Plots for Hopping from Mote Figure 14: Acceleration Plots for Hopping

above Elbow

from Mote above Knee

Variatign of Acceleration Components while transitioning-from-sitting-tc Variaticita of Acceleration Components while transitioning-from-sitting-to-standin

— X Componen’ \\ — X Component
4r — Y Componeni Y — Y Component
-~ Z Component 5l ' - - ZComponent ||

Acceleration Value in m/s2
Acceleration Value in m/s2

-12

0 1000 2000 3000 3000 5000 6000 1% 1000 2000 3000 4000 5000 6000 7000

Time (in ms) Time (in ms)

Figure 15: Acceleration Plots in transitioning from Figure 16: Acceleration Plots in transitioning from
standing to sitting using Mote above Elbow standing to sitting using Mote above Knee

5 Methodology 2

We found that for our case, the sophisticated Bayesian learning we explained did not give good results. This was
because of lack of training data and data being temporal in nature. Hence we resorted to a simpler approach
of observing the following along the 3 directions of acceleration

e Standard deviation
e Range (max - min)

We applied control flow rules on these values and have got very good results (almost 100% accuracy). We
noticed that these values are characteristic of the activity performed, and hence their use was justified. The
code attached below implements the ideas mentioned above to have activity prediction.

6 Experimental Set Up

Finally, we have been able to interface with multiple motes in parallel. We plot the real time acceleration values
for all motes and show the average value in the past window. On the interface, we show the activity predicted
based on the data collected in the last 6 seconds. Upto 4 people can start performing an activity, and the
prediction algorithm displays the predicted activity.

7 Results

On our interface, we show the past variation of accleration values along the 3 independent directions in time.
We have used the JFreeChart® java library to plot these values. One can also see the current activity being
performed based on the activity observed in the past 10 seconds. The main drawback of our approach is the
need to keep the mote in an upright position and that during a transition between 2 activities, we have not
predicted the correct activity. The programming was done in Java using the Netbeans 7 IDE which has the

®http://jfreechart.org

preloaded Sun SPOT libraries in particular the ANT binaries to deploy the program. The program running on
the mote is written on Java and it reports the data values via the radio link to a program running on the host
written in Java. The data values were logged and analyzed. Some analysis work done in Python and Matlab.
Some screenshots of the interface are attached below showing the acceleration variations and the activities
predicted. The actual readings which were characteristic of the activity are circled in black.

£ 0014.4F071.0000.26FE::33

o 100,000 200,000 300,000 400,000 500,000 o 50000 100000 1S0000 200000 250,000 300000 350.000 400000 450000 S00.000

— Acceleration X — avg Data — Acceleration X — avg Data

os

oo
05
10
s
20
25

50000 100000 150000 200000 250000 300000 350.000 400000 450.000 500.000

100,000 200,000 300,000 400, 500,000

— Acceleration ¥ — avg Data — ActEIErath Y — avg Data

-
15 15 |
10 1.0 I
o ” i
o

@ TEEEED BT EETI) S PTEET) CRTeeT) 50,000 100000 150000 200,000 250,000 300000 350,000 400,000 450,000 500,000

— Acceleration Z — avg Data — Acceleration Z — avg Data

Activity: Hopping Activity: Sitting

Figure 17: Interface showing acceleration variation Figure 18: Interface showing acceleration variation
for hopping activity for sitting activity

< 0014.4F01.0000. 26FE:: = | B)] £ 0014.4F01.0000.26FE::33
20
e 10
10 as |
os
oo
oo
os 05
-10 -1e
o 100,000 200 000 200,000 400,000 so0.000 500,000 700,000 so0.01 e iooooo 1s00o0 200000 | 260000 300,000 350000 | 400,000
—— Acceleration X — avg Data — Acceleration X — avg Data
os os
oo oo
os 05
04z H— 10
15 15
20 20
25 25
o 100,000 200 000 200,000 400,000 s00.000 e00.000 700,000 so0.01 5 e 100000 150000 200,000 | 2s0000 | 300,000 3500000 400,000
— Acceleration ¥ — avg Data — Acceleration ¥ — avg Data
20 20
15 15 |
10 10
os 0s -
oo oo
o5 05
10 1.0
100,000 200,000 300.000 <00.000 500,000 600.000 700.000 800.01 o 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000
—— Accelsration Z — avg Data — Acceleration Z — avg Data
Activity: Standing Activity: Walking

Figure 19: Interface showing acceleration variation Figure 20: Interface showing acceleration variation
for standing activity for walking activity

10

8

Conclusions

We were able to successfully interface with 4 motes in parallel and are able to predict the activity performed
by the 4 people wearing each of these motes respectively. The activities considered were Standing, Sitting,
Running, Walking & Hopping. The rules considered can be extended to include any other activity.

References

1]

2]

9

9.1

J.K. Aggarwal and M.S. Ryoo. Human activity analysis: A review. ACM Comput. Surv., 43:16:1-16:43,
April 2011.

Pierluigi Casale, Oriol Pujol, and Petia Radeva. Human activity recognition from accelerometer data using
a wearable device. In Proceedings of the 5th Iberian conference on Pattern recognition and image analysis,
IbPRIA’11, pages 289-296, Berlin, Heidelberg, 2011. Springer-Verlag.

Anthony Hoogs and A. G. Amitha Perera. Video activity recognition in the real world. In Proceedings of
the 23rd national conference on Artificial intelligence - Volume 3, pages 1551-1554. AAAT Press, 2008.

Adil Mehmood Khan. Human Activity Recognition Using A Single Tri-azial Accelerometer. PhD thesis,
Kyung Hee University, Seoul, Korea, 2011.

Asad Masood Khattak, A.M Khan, Young-Koo Lee, and Lee Sungyoung. Analyzing association rule mining
and clustering on sales day data with xlminer and weka. International Journal of Database Theory and
Application, June 2010.

Agha Muhammad, Niklas Klein, Kristof Van Laerhoven, and Klaus David. A feature set evaluation for
activity recognition with body-worn inertial sensors. In Workshop on Interactive Human Behavior Analysis
in Open or Public Spaces (InterHub) 2011, Amsterdam, 11/2011 2011. Springer Verlag, Springer Verlag.

Martha E. Pollack, Laura Brown, Dirk Colbry, Colleen E. McCarthy, Cheryl Orosz, Bart Peintner, Sailesh
Ramakrishnan, and Ioannis Tsamardinos. Autominder: An intelligent cognitive orthotic system for people
with memory impairment, 2003.

Shinichi Takeuchi, Satoshi Tamura, and Satoru Hayamizu. Accelerometry-based classification of human
activities using markov modeling. Computational Intelligence and Neuroscience, 2011:10, 2011.

X Yang, A Dinh, and L Chen. A wearable real-time fall detector based on Naive Bayes classifier, page 14.
IEEE, 2010.

Xiuxin Yang, Anh Dinh, and Li Chen. A wearable real-time fall detector based on naive bayes classifier.
In Electrical and Computer Engineering (CCECE), 2010 23rd Canadian Conference on, pages 1 —4, may
2010.

Appendix: Code

Java code: Data Collection, GUI interface & Prediction

We present below the set of Java files to collect the data from the motes, and predict the activity performed
based on certain rules.

Tt W N~

11

6 package org.

7

8 import
9import
10 import
11

12 import
13

14 import
15 import
16 import
17 import
18 import
19 import
20
21 public
22

23 private

24

25 private
26 private
27 private
28 private
29 private
30 private

sunspotworld .demo;

java.io.DatalnputStream;
java.io.DataOutputStream;
java.io.lOException;
javax.microedition.io.Connector;
com.sun.spot.io.j2me.radiostream . RadioOutputStream;
com.sun.spot.io.j2me.radiostream . RadiostreamConnection ;
com.sun.spot.peripheral. NoRouteException;
com.sun.spot.peripheral. TimeoutException;
com.sun.spot.sensorboard . EDemoBoard;
com.sun.spot.sensorboard. peripheral.lAccelerometer3D;
class DatalnputOutputStreamConnection {

final int TIMEOUT = 3000;

boolean connected = false;

RadiostreamConnection conn = null;

RadiostreamConnection connROS = null;

DatalnputStream dis = null;
DataOutputStream dos = null;
RadioOutputStream ros = null;

31

32

33 TAccelerometer3D accelerometer ;

34 double accelerationX;

35 double accelerationY ;

36 double accelerationZ;

37 double tiltX;

38 double tiltY;

39 double tiltZ;

40

41 public DatalnputOutputStreamConnection () {

42)

43

44 public void connect(String address,String ouraddress)

45 {

46 if (ouraddress.equals(”0014.4F01.0000.26FE”))

47 PORT = 33;

48 else if (ouraddress.equals(”0014.4F01.0000.2AE6”))
49 PORT = 43;

50 else if (ouraddress.equals(”0014.4F01.0000.2B44”))
51 PORT = 53;

52 else if (ouraddress.equals(”0014.4F01.0000.27AA”))
53 PORT = 63;

54 else

55 System.out . println (” Error”);

56

57

58

59 System.out. println (" Port = 7 + PORT) ;

60 System.out. println (7" Address = 7 + address);

61 connected = false;

62 try {

63 System.out.println (”Making connecetion open call”);
64 conn.setTimeout (TIMEOUT) ;

65 } catch (Exception el) {

66 System.out. println (”Error in connect()...17);
67 el.printStackTrace () ;

12

68 conn = null;

69 }

70

71

72 String tmp = null;

73

74 try {

75 dis = (DatalnputStream)conn.openDatalnputStream () ;
76 dos = (DataOutputStream)conn.openDataOutputStream () ;
7 } catch (IOException e) {

78 System.out. println (”Error in connect()...27);
79 e.printStackTrace () ;

80 }

81

82 while (! connected) {

83 try {

84 dos . writeUTF (7GO”) ;

85 System.out . println (GO send to basestation”);
86 dos. flush () ;

87 } catch (IOException el) {

88 el.printStackTrace () ;

89 System.out . println (” Exception on writeUTFE”);

90

91

92 }

93

94 try {

95 tmp = dis.readUTF () ;

96 System.out . println (” Received = 7 + tmp);
97 } catch (TimeoutException e) {

98 e.printStackTrace () ;

99 System.out.println (” Timeout ... other end is not responding”);
100 } catch (IOException el) {

101 el.printStackTrace () ;

102 System.out . println (” Exception on readUTF”);

103 }

104

105 if (tmp != null) {

106 if (tmp.equalsIgnoreCase ("GOT Message”)) {

107 connected = true;

108 System.out . println (” Connected to 7 4+ address);
109 1 else {

110 connected = false;

111 System.out . println ("NOT connected to 7 + address);
112 }

113 }

114 }

115}

116

117 public void closeConnection () {

118 if (connected = false)

119 return ;

120 connected = false;

121 try {

122 dos. close ();

123 dis.close () ;

124 conn. close () ;

125 } catch (IOException e) {

126 e.printStackTrace () ;

127 }

128}

129

13

130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167
168
169

170
171
172
173
174

175
176
177
178
179
180
181
182
183
184
185
186
187

public void send () throws IOException, NoRouteException

{
accelerometer = EDemoBoard. getInstance ().getAccelerometer () ;
accelerationX = accelerometer.getAccelX () ;
accelerationY = accelerometer.getAccelY ();
accelerationZ = accelerometer.getAccelZ ();
tiltX = accelerometer.getTiltX () ;
tiltY = accelerometer.getTiltY () ;
tiltZ = accelerometer.getTiltZ () ;
dos.writeUTF ((int)System. currentTimeMillis () + 7:” + accelerationX + 7:7 +
accelerationY +7:7 + accelerationZ + 7:7 + tiltX + 7:7 + tiltY + 7:7 + tiltZ);
dos. flush () ;
}
public String receive () {
String recv = null;
try {
recv = dis.readUTF () ;
} catch (IOException e) {
e.printStackTrace () ;
recv = "nothing received ...”;
}
return recv;
}
public void startSendingThread () {
Runnable r = new Runnable ()
{

} .

new Thread(r)).start ();

(

public void run()

{

conn .setTimeout (500) ;
while (connected)

try {

System.out.println (” Sending

send () ;
} catch (NoRouteException el) {

System.out . println (” Error in
1117);

el.printStackTrace () ;
} catch (IOException el) {

System.out. println (” Error in
2297,

el.printStackTrace () ;

catch (Exception ex)

{
System.out.println (” Error in
3337);
ex.printStackTrace () ;
}

try {

}

}
}
s

Thread . sleep (100) ;
catch (InterruptedException e) {
e.printStackTrace () ;

14

")

startSendingThread

startSendingThread

startSendingThread

188 }
Listing 1: codes/tDatalnputOutputStreamConnection.java

1 package org.sunspotworld.demo;
2
3
4 public class DisplayNew extends javax.swing.JFrame
54
6
7 XYAreaNew gl ,g2,g3;
8
9
10 public DisplayNew ()
11 {
12
13 initComponents () ;
14
15 this.setSize (650,820);
16 gl=new XYAreaNew () ;
17 this.jPanell.add(gl.Create_Chart(this.jPanell.getWidth (), this.jPanell.getHeight())
)
18
19 g2=new XYAreaNew () ;
20 this.jPanel2.add(g2.Create_Chart(this.jPanel2.getWidth (), this.jPanel2.getHeight())
)
21
22 g3=new XYAreaNew () ;
23 this.jPanel3.add(g3.Create_Chart(this.jPanel3.getWidth (), this.jPanel3.getHeight ())
)
24
25 gl.addDynamicDataSeries (” Acceleration X7);
26 g2.addDynamicDataSeries (” Acceleration Y”);
27 g3.addDynamicDataSeries (” Acceleration Z7);
28
29 }
30
31 private void initComponents() {
32
33 jPanell = new javax.swing.JPanel();
34 jPanel3 = new javax.swing.JPanel();
35 jPanel2 = new javax.swing.JPanel();
36 jLabell = new javax.swing.JLabel();
37 jLabel2 = new javax.swing.JLabel () ;
38
39 setDefaultCloseOperation (javax.swing. WindowConstants . EXIT_ON_CLOSE) ;
40 getContentPane () .setLayout (null);
41
42 jPanell .setBorder (javax.swing.BorderFactory.createLineBorder (new java.awt.Color (0,
0, 0)));
43 jPanell .setLayout(null);
44 getContentPane () .add(jPanell);
45 jPanell .setBounds (25, 25, 600, 200);
46
47 jPanel3.setBorder (javax.swing.BorderFactory.createLineBorder (new java.awt.Color (0,
0, 0)));
48 jPanel3.setLayout(null);
49 getContentPane () .add(jPanel3);
50 jPanel3.setBounds (25, 475, 600, 200);
51
52 jPanel2.setBorder (javax.swing.BorderFactory.createLineBorder (new java.awt.Color (0,
0, 0)));
53 jPanel2.setLayout(null);

15

54 getContentPane () .add(jPanel2);

55 jPanel2.setBounds (25, 250, 600, 200);
56

57 jLabell .setText (7 Activity:”);

58 getContentPane () .add(jLabell);

59 jLabell .setBounds (240, 690, 70, 20);
60

61 jLabel2.setText ("IDLE”) ;

62 getContentPane () .add(jLabel2);

63 jLabel2.setBounds (310, 690, 220, 22);
64

65 pack () ;

66

67 public static void main(String args[]) {
68 java.awt.EventQueue. invokeLater (new Runnable() {
69 public void run() {

70 new DisplayNew () .setVisible (true);
71 }

72 R

73 }

74

75 private javax.swing.JLabel jLabell;

76 private javax.swing.JLabel jLabel2;

Yt private javax.swing.JPanel jPanell;

78 private javax.swing.JPanel jPanel2;

79 private javax.swing.JPanel jPanel3;

80

81

82 public void setLabel(String newText)

83 {

84 jLabel2.setText (newText) ;

85 }

86 }

Listing 2: codes/tDisplayNew.java

1 package org.sunspotworld.demo;

2

3import com.sun.spot.io.j2me.radiogram.RadiogramConnection;
4 import com.sun.spot.peripheral.TimeoutException;

5import java.io.lIOException;

6 import javax.microedition.io.Connector;

7import javax.microedition.io.Datagram;

8

9 public class HandShakeConnection {

10

11 private final int TIMEOUT = 2000;

12 private final int PORT = 100;

13

14 private boolean connected = false;

15 private RadiogramConnection conn = null;
16 private Datagram dg = null;

17 String ownAddress = null;

18

19 HandShakeConnection (String ownAddressl)
20 {

21 ownAddress = ownAddressl;

22 }

23

24 public void connect(String address)

25 {

26 connected = false;

27 try

16

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

System.out. println (”Making connection open call

conn . set Timeout (TIMEOUT) ;

}

catch (Exception el)

{
System.out. println (”Error in connect()...17);
el.printStackTrace () ;
conn = null;

}

String tmp = null;
try
{

dg = conn.newDatagram (conn.getMaximumLength ()) ;

catch (IOException e)

{
System.out.println (”Error in connect()...27);
e.printStackTrace () ;
}
while (! connected)
{
try
{
dg.writeUTF (ownAddress) ;
conn.send (dg) ;
conn.receive (dg);
String response = dg.readUTF () ;
System.out.println (”Received: 7 4 response);
if (response.equals(” Received”))
connected = true;
catch (IOException el)
{
el.printStackTrace () ;
System.out.println (” Exception on writeUTF
}
catch (Exception el)
{
el.printStackTrace () ;
System.out.println (” Exception on writeUTF
}
}

public void closeConnection ()

if (connected = false)
return ;

connected = true;

try

{

conn. close () ;
catch (IOException e)

{

e.printStackTrace () ;

17

gram”) ;

1117) ;

222 7);

90 }
91 }
92}

Listing 3: codes/tHandShakeConnection.java

1 package org.sunspotworld.demo;

2

3import com.sun.spot.io.j2me.radiostream.RadiostreamConnection;
4import com.sun.spot.util.Queue;

5import java.io.DatalnputStream;

6 import java.io.DataOutputStream;

7import java.util.Vector;

8

9 public class Spot {

10

11

12 Spot ()

13 {

14 startTime = 0;

15 dataX_One = new Vector();
16 dataY_One = new Vector();
17 dataZ_One = new Vector();
18 dataX_Two = new Vector () ;
19 dataY_Two = new Vector () ;
20 dataZ_Two = new Vector();
21 averageX = 0;

22 averageY = 0;

23 averageZ = 0;

24 firstRecord = true;

25 }

26 public String address;

27 public int port;

28 public RadiostreamConnection conn;
29

30 public DatalnputStream dis ;
31 public DataOutputStream dos ;
32 boolean active;

33

34 public double averageX;

35 public double averageY ;

36 public double averageZ;

37 public double maxX;

38 public double minX;

39 public double maxY;

40 public double miny;

41 public double maxZ;

42 public double minZ;

43

44 Queue queue;

45

46

47 Vector dataX_One;

48 Vector dataY_One;

49 Vector dataZ_One;

50

51 Vector dataX_Two;

52 Vector dataY_Two;

53 Vector dataZ_Two;

54

55 double startTime;

56 double currentTime;

57

18

58

59

60 boolean firstRecord;
61

62 public int noOfMaxima;
63 public int noOfMinima;
64

65

66

67

68

69 }

Listing 4: codes/tSpot.java

1 package org.sunspotworld.demo;
2
3import com.sun.spot.peripheral.NoRouteException;
4 import com.sun.spot.peripheral.Spot;
5import com.sun.spot.sensorboard.EDemoBoard;
6 import com.sun.spot.sensorboard. peripheral.lAccelerometer3D;
7import com.sun.spot.sensorboard. peripheral.ITriColorLED;
8 import com.sun.spot.peripheral.radio.lIRadioPolicyManager;
9 import com.sun.spot.io.j2me.radiostream .x;
10 import com.sun.spot.io.j2me.radiogram . x;
11 import com.sun.spot.peripheral.ChannelBusyException;
12 import com.sun.spot.util.x;
13
14 import java.io.x*;
15 import javax.microedition.io.x;
16 import javax.microedition.midlet.MIDlet;
17 import javax.microedition.midlet.MIDletStateChangeException;

18

19 public class SunSpotApplication extends MIDlet {

20

21 ITriColorLED [] leds;

22 TAccelerometer3D accelerometer;

23 double accelerationX;

24 double accelerationY ;

25 double accelerationZ;

26 double tiltX;

27 double tiltY;

28 double tiltZ;

29

30

31

32

33 private final String REMOTESPOT_ADDRESS = "0014.4F01.0000.298A” ;

34 private DatalnputOutputStreamConnection rConnection = null;

35 private HandShakeConnection handShakeConn = null;

36

37

38

39 protected void startApp () throws MIDletStateChangeException

40 {

41 IEEEAddress ourAddr = new IEEEAddress(Spot.getInstance ().getRadioPolicyManager () .
getIEEEAddress ());

42 leds = EDemoBoard. getInstance () .getLEDs () ;

43

44

45

46

47

19

48

49 String recv = null;

50 int iRecv = 0;

51 rConnection = new DatalnputOutputStreamConnection () ;
52

53 System.out . println (”I’'m about to connect to the host application!”);
54

55 rConnection . connect (REMOTE_SPOT_ADDRESS, ourAddr . toString ()) ;
56

57 System.out.println (”I’'m connected”);

58

59 rConnection.startSendingThread () ;

60

61 while (true)

62 {

63 recv = rConnection.receive () ;

64 System.out.println (recv);

65

66 System.out. println (iRecv);

67

68 try {

69 Thread . sleep (100) ;

70 } catch (InterruptedException e) {

71 e.printStackTrace () ;

72 }

73 }

74 }

75

76

7

78 protected void pauseApp() {

79 }

80

81 protected void destroyApp(boolean unconditional) throws MIDletStateChangeException {
82 }

831

Listing 5: codes/tSunSpotApplication.java

1 package org.sunspotworld.demo;
2
3
4 import com.sun.squawk.io.BufferedReader;
5import com.sun.squawk.io.BufferedWriter;
6 import java.lang.x;
7import java.io.x;
8 import java.util.Calendar;
9import javax.microedition.io.x*;
10 import javax.microedition.midlet .x;
11 import com.sun.spot.peripheral.x;
12 import com.sun.spot.peripheral.radio.x;
13 import com.sun.spot.io.j2me.radio.x*;
14 import com.sun.spot.io.j2me.radiogram.x;
15 import com.sun.spot.io.j2me.radiostream.RadiostreamConnection;
16 import com.sun.spot.util.IEEEAddress;
17 import com.sun.spot.util. Utils;
18 import com.sun.squawk.util.StringTokenizer;
19 import javax.microedition.rms.RecordStore;
20 import javax.microedition.rms.RecordStoreException;
21 import java.util.Date;
22 import java.util.Timer;
23 import java.util.TimerTask;
24 import java.util. Vector;

20

25 public class SunSpotHostApplication

26 {
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

Spot spot;

DisplayNew DisplayNew ;

public SunSpotHostApplication(String

address ,

i)

address = 70014.4F01.0000.26FE” ;

address = 70014.4F01.0000.2AE6” ;

int port)

DisplayNew.setTitle (spot.address 47 ::”+ spot.port);

{
spot=new Spot () ;
spot.address = address;
spot.port = port;
DisplayNew=new DisplayNew () ;
DisplayNew. setVisible (true);
}
public void populateSpotDetails(int
{
if (i==0)
spot.
spot.port = 33;
}
else
{
spot .
spot.port = 43;
}
}

public void runSimulation ()

{

System.out.println
System.out . println (’
System.out . println (’
System.out.println
System.out.println (’
System.out. println (’
DisplayNew .

spot.address + 7:”

spot.conn.setTimeout (2000) ;

spot . dis
spot .dos

Timer timer=new Timer () ;
timer.schedule (new TimerTask ()

{
publi
{
t
{

9
99

9
9

99

”

9 99

(")
(")
(")
(")
(")
(")
p

= spot.conn.openDatalnputStream () ;

throws IOException

+ spot.port);

= spot.conn.openDataOutputStream (

¢ void run()

ry
String question = null;
question = spot.dis.readUTF () ;

if (question.length () >10)

21

setTitle (spot.address +7::”7+ spot.port);

);

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118

119

120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144

StringTokenizer str=nmew StringTokenizer(question ,”:”);

double time=Double. parseDouble(str.nextToken());
double ax=Double.parseDouble(str.nextToken());
))
))

)

double ay=Double.parseDouble(str.nextToken (
double az=Double. parseDouble(str.nextToken (

if (spot.firstRecord)

System.out.println (” First record”);
spot.startTime = time;
spot . firstRecord = false;

}
spot.currentTime = time;
double timeDifference = spot.currentTime — spot.startTime;

spot .dataX_Two.addElement (Double. toString (ax));
spot .dataY _Two.addElement (Double. toString (ay)) ;
spot .dataZ_Two.addElement (Double. toString (az));
if ((timeDifference > 3000))
System.out . println (”timeDifference = 7 + timeDifference);
spot . firstRecord = true;
if (spot.dataX_One. size () >0)

{

spot.averageX = calculateAverage (spot.dataX_One,spot.

dataX_Two) ;

spot.averageY = calculateAverage (spot.dataY_One,spot.
dataY_Two) ;

spot.averageZ = calculateAverage (spot.dataZ_One,spot.
dataZ_Two) ;

double deviationScore=0;

double rangeScore=0;

double deviation=deviation (spot.dataX_One,spot.dataX_Two);

deviationScore += deviation;

double range=range (spot.dataX_One,spot.dataX_Two);

rangeScore += range;

System.out . println (”deviation= "+deviation);

System.out . println (?range= ”+4range) ;

BufferedWriter outl = null;

FileWriter fileWriter = null;

File file = new File ("E:\\ ActivityData\\”+spot.address+".
txt”);

fileWriter = new FileWriter (file ,true);

outl = new BufferedWriter (fileWriter);

outl.write(”spot="+spot.address+’\n");

outl.write (”X: deviation="+deviation +’\n”);

outl.write (”X: range="4+range+"\n”);

deviation=deviation (spot.dataY_One,spot.dataY_Two) ;

deviationScore += deviation;

range=range (spot.dataY_One, spot .dataY_Two) ;

rangeScore += range;

outl.write(”Y:deviation="+deviation +’\n”);

outl.write (”Y:range="4range +’\n”);

deviation=deviation (spot.dataZ_One,spot.dataZ_ Two);
deviationScore += deviation;

22

145 range=deviation (spot.dataZ_One,spot.dataZ Two);

146 rangeScore += range;

147 outl.write(”Z:deviation="+deviation +’\n”);
148 outl.write(”Z:range="+range +’\n\n\n\n\n");
149

150 outl.close();

151

152 String Activity [];

153 Activity = new String[3];

154 Activity [0] = "WAILK” ;

155 Activity [1] = "HOP”;

156 Activity [2] = "RUN”;

157

158 double score=rangeScore+deviationScore;
159

160 double max_s=2.5;

161 double min_-w=1.5;

162 double max.w = 6;

163 double min_h = 4.6;

164 double max_h = 11;

165 double min_r=11;

166

167 System.out . println (”in x="+spot.averageX);
168 System.out.println (”in y="+spot.averageY);
169 System.out . println (”in z="4spot.averageZ);
170

171 String activity="";

172 String stat="Sitting”;

173 if (Math.abs(spot.averageY) >.6)

174 stat="Standing” ;

175

176 if (score<min_w)

177 {

178 activity=stat;

179 }

180 else if (score>min.w && score<max_.s)
181 {

182 if (Math.abs(spot.averageZ) >.06)

183 activity="Walking” ;

184 else

185 activity=(stat);

186 }

187 else if (score>max.s && score<min_h)
188 {

189 activity="Walking” ;

190 }

191 else if (score<max.w && score>min_h)

192 {

193 if (deviation(spot.dataY_One,spot.dataY_Two) >.65)
194 activity="Hopping” ;

195 else

196 activity = ”"Walking”;

197 }

198

199 else if (score < min.r && score>max_w)
200 {

201 activity="Hopping” ;

202 }

203 else if (score>min_r)

204 {

205 activity=("Running”) ;

206 }

23

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

System . out .
DisplayNew .

spot .dataX_One.
spot .dataY _One.
spot .dataZ_One.

5

println (7 Activity = 7 4activity);
setLabel (activity);

removeAllElements () ;
removeAllElements () ;
removeAllElements () ;

for (int i=0;i<spot.dataX_Two.size ();i++)

{

spot .dataX_One.addElement (spot .dataX_Two.elementAt (i));
spot .dataY_One.addElement (spot.dataY_Two.elementAt(i));
spot.dataZ_One.addElement (spot.dataZ_Two.elementAt(i));

}

spot .dataX_Two.
spot .dataY_Two.
spot .dataZ_Two.

}

removeAllElements () ;
removeAllElements () ;
removeAllElements () ;

DisplayNew . gl .updateDynamicData(time, ax, spot.averageX);
DisplayNew . g2 .updateDynamicData(time, ay, spot.averageY);
DisplayNew . g3 .updateDynamicData (time, az, spot.averageZ);

spot .dos.writeUTF ("GOT Message”) ;

spot .dos. flush () ;

}

catch (NoRouteException e)

{

System.out.println (”No route to spot”);

e.printStackTrace () ;

}

catch (IOException ex)

{

System.out. println (" Nothing to read from 7 + spot.address);

ex.printStackTrace () ;

}

},100,100) ;

}

261 public double calculateAverage(Vector one, Vector two)

262 {

263
264
265
266
267
268

double average = 0;
double sum = 0;
for (int i=0;i<one.size ();i++)

double x = Double. parseDouble ((String)one.elementAt(i));

sum = sum + X;

24

269 }

270 for (int i=0;i<two.size ();i++)

271 {

272 double x = Double. parseDouble ((String)two.elementAt(i));
273 sum = sum + X;

274

275 }

276

277 for (int i=0;i<one.size ();i++)

278

279 double x = Double. parseDouble ((String)one.elementAt(i));
280 sum = sum + X*X;

281 }

282 for (int i=0;i<two.size ();i++)

283

284 double x = Double. parseDouble ((String)two.elementAt(i));
285 sum = sum + X*X;

286

287 average = sum/((double) (one.size () + two.size()));

288

289 return average;

290 }

291

292 public double range(Vector one, Vector two)

293 {

294 double max = —222;

295 double min = 222;

296 for (int i=0;i<one.size ();i++)

297 {

298 double x = Double. parseDouble ((String)one.elementAt(i));
299 if (x>max)

300 max=x ;

301 if (x<min)

302 min=x;

303 }

304 for (int i=0;i<two.size ();i++)

305

306 double x = Double. parseDouble ((String)two.elementAt(i));
307 if (x<min)

308 min=x;

309

310 if (x>max)

311 max=x ;

312 }

313 return max—min;

314

315 for (int i=0;i<one.size ();i++)

316 {

317 double x = Double. parseDouble ((String)one.elementAt(i));
318 sum = sum + X*X;

319 }

320 for (int i=0;i<two.size ();i++)

321 {

322 double x = Double. parseDouble ((String)two.elementAt(i));
323 sum = sum + X*X;

324

325

326 }

327

328 public double calculatesquareAverage (Vector one, Vector two)
329

330 double average = 0;

25

331 double sum = 0;

332 for (int i=0;i<one.size ();i++)

333 {

334 double x = Double. parseDouble ((String)one.elementAt(i));
335 sum = sum + X*X;

336 }

337 for (int i=0;i<two.size ();i++)

338 {

339 double x = Double.parseDouble ((String)two.elementAt(i));
340 sum = sum + X*X;

341

342 }

343

344 average = sum/((double) (one.size () + two.size()));

345

346 return average;

347 }

348

349 public int calculatepeaks(Vector one, Vector two)

350 {

351 double average = calculateAverage (one,two);

352 int no_peaks=0;

353

354 for (int i=0;i<one.size ();i++)

355 {

356 double x = Double. parseDouble ((String)one.elementAt(i));
357 if (x>average)

358 no_peaks++;

359 }

360 for (int i=0;i<two.size ();i++)

361

362 double x = Double. parseDouble ((String)two.elementAt(i));
363 if (x>average)

364 no_peaks++;

365

366 }

367

368

369 return no_peaks;

370 }

371

372

373 public double deviation(Vector one, Vector two)

374 {

375 double dev=0;

376 dev=calculatesquareAverage (one,two)—calculateAverage (one,two)*calculateAverage (one,two)
377 return dev;

378 }

379

380 public static void main(String[] args) throws Exception

381 {

382

383 Vector sunSpotHostApps = new Vector () ;

384

385

386 SunSpotHostApplication appl = new SunSpotHostApplication(”0014.4F01.0000.26FE” ,33);
387 SunSpotHostApplication app2 = new SunSpotHostApplication(”0014.4F01.0000.2AE6” ,43);
388 SunSpotHostApplication app3 = new SunSpotHostApplication(”0014.4F01.0000.2B44” ,53);
389 SunSpotHostApplication app4 = new SunSpotHostApplication(”0014.4F01.0000.27AA” ;63);
390

391 sunSpotHostApps.addElement (appl) ;

26

392

393 for (int i=0;i<sunSpotHostApps.size ();i++)
394 {

395

396 try

397 {

398 ((SunSpotHostApplication)sunSpotHostApps.elementAt(i)).runSimulation () ;
399 }

400 catch (Exception ex)

401 {

402 ex.printStackTrace () ;

403 System.out.println (”Error 1117);
404 }

405 }

406 }

407 }

Listing 6: codes/tSunSpotHostApplication.java

1 package org.sunspotworld.demo;

O O Uk Wi

9
10
11 import java.awt.Color;
12
13 import java.util.Vector;
14 import org. jfree.chart.ChartPanel;
15 import org.jfree.chart.JFreeChart;
16 import org.jfree.chart.axis.NumberAxis;
17 import org. jfree.chart.plot.XYPlot;
18 import org.jfree.chart.renderer.xy.StandardXYItemRenderer;
19 import org. jfree.chart.renderer.xy.XYDotRenderer;
20 import org. jfree.chart.renderer.xy.XYItemRenderer;
21 import org. jfree.data.xy.XYDataset;
22 import org. jfree.data.xy.XYSeries;
23 import org.jfree.data.xy.XYSeriesCollection;

24

25 public class XYAreaNew {

26

27

28 NumberAxis rangeAxisl;

29 NumberAxis domainAxisl;

30 XYPlot plot;

31 XYSeriesCollection xy_series_collection;
32 public XYSeries|[] grph_series;
33 public XYSeries dynamicData;
34 XYDataset xy_dataset;

35 JFreeChart chart;

36 XYDotRenderer XYDotRend;

37 XYItemRenderer StdXYRend;

38 public boolean first=true;
39 double initialTime =0;

40 XYSeries avgData;

41 double avgValue;

42

43

44 public XYAreaNew () {

27

45 rangeAxisl = new NumberAxis() ;

46 domainAxisl = new NumberAxis() ;

47 xy-series_collection = new XYSeriesCollection ();
48 StdXYRend = new StandardXYItemRenderer () ;

49 XYDotRend=new XYDotRenderer () ;

50 XYDotRend. setDotHeight (2) ;

51 XYDotRend . setDotWidth (2) ;

52 plot = new XYPlot(xy_series_collection , domainAxisl, rangeAxisl, StdXYRend);
53 }

54 public void createDataSeries(int nSeires, String seriesTitle []){
55 grph_series=new XYSeries|[nSeires];

56 for (int i=0;i<nSeires;i++)

57 {

58 grph_series [i]=new XYSeries(seriesTitle[i], false);
59 xy_series_collection.addSeries(grph_series[i]);
60 }

61

62 }

63 public void addDynamicDataSeries(String seriesName) {
64 dynamicData=new XY Series(seriesName , false);

65 avgData=new XY Series(”avg Data”, false);

66 xy.series_collection.addSeries (dynamicData) ;

67 xy_series_collection.addSeries (avgData) ;

68 }

69 public void updateDynamicData(double xValue, double yValue, double average)
70 {

71

72 if(first){

73 first=false;

74 initial Time=xValue;

75 }

76 dynamicData.add (xValue—initialTime ,yValue);

s avgValue=average;

78 if (dynamicData . getItemCount () >0){

79 avgData.add (xValue—initialTime , avgValue);

80 }

81 }

82

83 public void setGraphTitle(String title){

84 chart.setTitle(title);

85 }

86 public void resetGraph (){

87 xy._series_collection.removeAllSeries () ;

88

89}

90 public void addGraphSeries(XYSeries graphData) {

91

92 chart.getXYPlot () .setRenderer (StdXYRend) ;

93 xy_series_collection.addSeries (graphData) ;

94

95 }

96 public void setGraphRenderer(boolean dotOrStdXY) {

97 if (dotOrStdXY=—=true){

98 chart.getXYPlot () .setRenderer (StdXYRend) ;

99 telse{

100 chart.getXYPlot () .setRenderer (XYDotRend) ;

101 }

102

103

104

105 public void setXYLabels(String xlabel, String ylabel){
106 chart.getXYPlot () .getDomainAxis () .setLabel(xlabel);

28

107 chart.getXYPlot () .getRangeAxis().setLabel(ylabel);

108

109}

110 public void setGraphYAxisRange(double min_y, double max_y){

111 plot . getRangeAxis () .setAutoRange(false);

112 plot.getRangeAxis () .setRange(min_y, max.y);

113 plot.getRangeAxis () .setAutoRangeMinimumSize (0.001) ;

114 }

115 public void setGraphXAxixRange(double min_x, double max_x){

116 plot.getDomainAxis () .setAutoRange (false);

117 plot .getDomainAxis () .setRange (min_x, max_x);

118 plot.getDomainAxis () .setAutoRangeMinimumSize (0.010) ;

119 }

120 public void setGraphBackGroundColor(Color clr){

121 plot.setBackgroundPaint (clr);

122 }

123 public ChartPanel Create_Chart(int width, int height) {

124 chart = new JFreeChart(””, JFreeChart.DEFAULT TITLE FONT, plot, true);

125 ChartPanel chart_pnl = new ChartPanel(chart);

126 chart_pnl.setSize (width, height);

127 chart_pnl.setBackground (new Color (255, 0, 0));

128 return chart_pnl;

129

130 void Update_DataSet(int no_-of_series , String|[] series_title , int no_of_rows, double [][]
radar_data) {

131 try {

132

133

134 for (int s = 1; s <= no.of_series; s++) {

135 for (int r = 1; r <= no_of_rows; r++) {

136 grph_series[s].add(radar_data[r][0], radar_data[r][s]);

137 }

138 }

139

140 xy-dataset = xy_series_collection;

141 }

142

143 catch (Exception e) {

144 System.out.println (e.getMessage ());

145 }

146

147 void Update_DateSetl(double x, double yl, double y2, double y3, double y4) {

148 grph_series [1].add(x, yl);

149 grph_series [2].add(x, y2);

150 grph_series [3].add(x, y3);

151 grph_series [4].add(x, y4);

152 }

153

154}

Listing 7: codes/tXYAreaNew.java

9.2 Training Analysis

Some additional code was written in Python/Matlab which is skipped for the sake of brevity.

29

